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Abstract

Variation and differences of MRSA transmission within and between healthcare settings are not 

well understood. This variability is critical for understanding the potential impact of infection 

control interventions and could aid in the evaluation of future intervention strategies. We fit a 

Bayesian transmission model to detailed individual-level MRSA surveillance data from over 230 

Veterans Affairs (VA) hospitals and nursing homes. Our approach disentangles the effects of 

potential confounders, including length of stay, admission prevalence, and clearance, estimating 

dynamic transmission model parameters and temporal trends. The median baseline transmission 

rate in hospitals was approximately four-fold higher than in nursing homes, and declined in 46% 

of hospitals and 9% of nursing homes, resulting in a median transmission rate reduction of 43% 

across hospitals and an increase of 2% in nursing homes. For first admissions into an acute care 

facility, the median (range) importation probability was 10.5% (5.9%–18.4%), and was nearly 

twice as large, 18.7% (9.2%–37.4%), in nursing homes. This analysis found differences within and 

between hospitals and nursing homes. The transmission rate declined substantially in hospitals and 

remained stable in nursing homes, while admission prevalence was considerably higher in nursing 

homes than in hospitals.
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1. Introduction

Antibiotic-resistant pathogens are major causes of morbidity and mortality in healthcare 

settings, where Methicillin-resistant Staphylococcus aureus (MRSA), first identified in the 

1960s and common in hospitals by the 1980s (McDonald, 2006; Panlilio et al., 1992), 

increased in prevalence (McDonald, 2006; Klevens et al., 2006) through 2005. Since then, 

rates of hospital associated MRSA infections and colonization have been on the decline 

across the United States (Dantes et al., 2013; Landrum et al., 2012).

As with national trends, rates of MRSA healthcare-associated infections in Department 

of Veterans Affairs (VA) hospitals have declined since late 2007. Some attribute this 

decline to VA’s MRSA Prevention Initiative which comprised universal nasal surveillance 

for MRSA colonization, contact precautions for patients who were identified carriers of 

MRSA, an emphasis on hand hygiene, and an institutional culture change which placed the 

responsibility of infection control on everyone who had contact with patients. The MRSA 

Prevention Initiative launched nationally in hospitals October 1, 2007 (Jain et al., 2011), and 

extended it to all VA nursing homes on January 1, 2009 (Evans et al., 2014). Although VA 

MRSA infection rates dropped following VA’s MRSA Prevention Initiative, experts debate 

the extent to which the MRSA Prevention Initiative contributed to those rate reductions 

(Gurieva et al., 2012; Jones et al., 2014; Lawes and Gould, 2012). This disagreement has 

prompted further debates about the role of mandated contact precautions (Morgan et al., 

2017; Rubin et al., 2018).

The epidemiology of MRSA infection has been studied across a broad range of healthcare 

settings, yet we have limited understanding of the heterogeneity in MRSA transmission 

(Kwok et al., 2018). Understanding variation in MRSA transmission is critical for 

identifying facility and patient characteristics that contribute to transmission, and for 

informing future interventions to control antibiotic resistant organisms. We conducted an 

epidemiological analysis of MRSA transmission in more than 230 facilities including acute 

care and nursing homes. The principal aims of this analysis were to better understand 

variation in MRSA transmission, within and between healthcare facility types, and to 

identify trends in the transmission rate immediately following implementation of the VA’s 

MRSA Prevention Initiative. To our knowledge, this analysis, based on a mechanistic 

transmission model, represents the largest such analysis to date.

Previous analyses of the MRSA Prevention Initiative focused on MRSA healthcare 

associated infections but neglected to investigate transmission or account for admission 

prevalence, length of stay, and decolonization (clearance); important factors underlying the 

epidemiology of MRSA in healthcare facilities. To provide new and more comprehensive 

insights into MRSA transmission in VA, we disentangle the effects of length of stay, 

admission prevalence, transmission rate, clearance rate, and imperfect testing to better 

understand the variability in MRSA transmission dynamics in VA hospitals and nursing 

homes. We also estimate trends in the per-capita transmission rate to estimate changes in 

transmission following implementation of the MRSA Prevention Initiative.
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2. Methods

2.1. Data

We analyzed electronic health record data from individuals admitted to a VA hospital 

between October 1, 2007 (when VA launched the initiative in its hospitals) and July 1, 2011; 

or to a VA nursing home from January 1, 2009 (when VA launched the initiative began in its 

nursing homes) and December 31, 2010. The different times at which the MRSA Prevention 

Initiative was implemented in hospitals and nursing homes, together with the completeness 

of the MRSA surveillance data available in our study cohort led to differing follow-up times 

between hospitals and nursing homes. Data included facility and patient identifier, date and 

time of admission and discharge, and MRSA surveillance test results.

There were 145 hospitals with patient data during the study period. Of these, we excluded 

7 hospitals that had a mean length of stay > 20 days, 6 additional hospitals with less than 

1% of patients having at least one surveillance test, and 3 more hospitals having a mean 

daily census of under 3 patients per day. Lastly, there were 7 hospitals with incomplete data 

which were excluded from this analysis, resulting in a total of 23 (16%) hospitals excluded 

leaving 122 hospitals for this analysis. From 136 nursing homes with patient data during the 

study period, we excluded 2 nursing homes having mean length of stay <10 days, and 23 

nursing homes with incomplete data, resulting in 25 (18%) nursing homes excluded leaving 

111 nursing homes in this analysis.

2.2. Model

We extended our recently published dynamic transmission models (Thomas et al., 2015; 

Khader et al., 2016) to allow for changes in patients’ colonization status, and temporal 

trends in transmission, and to estimate key epidemiologic parameters. This extended 

model allowed for patients who acquired and lost colonization with MRSA both during 

hospitalizations and between consecutive admissions. We assumed there were no false 

positive surveillance tests, but false negatives were represented by probabilistic uncertainty 

on the patients’ colonization status at the time of the negative test.

The key parameters (Table 1) include false negative probability, clearance rates both 

during admissions and between consecutive admissions, and intercept and slope for the 

log-transformed transmission rate. The intercept parameter corresponds with the baseline 
transmission rate (at the beginning of the study) while the slope indicates the temporal trend 

in the transmission rate over time. The in-situ probability is the probability that a patient is 

colonized at the beginning of the study period, which results from either an acquisition or an 

importation (MRSA colonized at the time of admission) prior to the beginning of the study. 

Below, we describe the implementation and the structure of the model in more detail.

The model was implemented within a Bayesian framework, depending on an augmented 
data set, D, which combined both observed data (i.e. admission, discharge and surveillance 

test times and results) and unobserved data (i.e. times of acquisition and clearance). We 

assumed that D was organized as a list of events ordered by their corresponding times, 

and we represented model parameters by θ. The likelihood of the data, D, given the model 

parameters is given by
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π(D ∣ θ) = ∏e ∈ D g(e; θ) ⋅ ℎ(te, te−; θ) . (1)

We define te and te− as the times of the events e, and the event prior, e−. The term g(e; 

θ) represents the contribution to the likelihood of event type e, while h (te, te−; θ) is the 

probability that no event is observed between times te and te−, given by the formula

ℎ(te, te−; θ) = exp −
Ute− ⋅ Cte−

Nte− ∫te−

te
λ(t)dt + ηCte−(te − te−) . (2)

The number of uncolonized and colonized individuals at time t are given by Ut and Ct, and 

Nt = Ut + Ct is the total number of patients at time t. The transmission rate parameter at time 

t is given by λ (t), and η denotes the constant rate of clearance for colonized patients in the 

facility.

We assumed that acquisitions in the hospital at time t per uncolonized individual occur at 

a rate of λ(t)·Ct/Nt, corresponding to a frequency-dependent transmission model. Since we 

were interested in estimating temporal trends in the transmission rate parameter, and because 

we require λ(t) ≥ 0, we assumed that λ(t) = exp(λI + λSt), where λI and λS are the intercept 

and slope respectively of the log-transmission rate. Consequently, the contribution of an 

acquisition event e to the likelihood is given by g(e; θ) = λ(te)·Cte−/Nte−.

At the time of admission into the facility, patients were assumed to be either colonized 

or uncolonized. The probability of colonization at admission, or importation, depended on 

whether the admission was a first-admission, in which case the probability was represented 

by the first-admission importation probability, or whether the patient had been previously 

admitted. Colonization status between consecutive admissions was modeled as a two-state 

continuous-time Markov chain (CTMC). In particular, uncolonized patients were colonized 

at rate α and colonized individuals lost colonization at rate γ. From these two parameters, 

we defined first-admission importation probability as the steady-state fraction of individuals 

who were colonized between consecutive admissions ν = α/(α + γ).

We explicitly modeled first-admission importation ν and outpatient clearance γ, from 

which estimates of α were uniquely determined. Therefore, for a first-admission event, 

the contribution to the likelihood was given by

g(e; θ) = V, if s(e) = 1
1 − V, if s(e) = 0 (3)

where s(e) indicates that the patient corresponding with event e was colonized at time te. 
For readmissions, the importation probability depended on patients’ colonization status at 

prior discharge, denoted ed, and the time since prior discharge Δt = te – ted. Computing 

the probability of importation for readmissions required computing transition probabilities 

for the out-of-facility CTMC, which resulted in the contribution of a readmission to the 

likelihood given by
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g(e; θ) =

V 1 − exp −Δt γ
1 − V , if s(e) = 1, s(ed) = 0

V + (1 − V) exp −Δt γ
1 − V , if s(e) = 1, s(ed) = 1

1 − V + V exp −Δt γ
1 − V , if s(e) = 0, s(ed) = 0

(1 − V) 1 − exp −Δt γ
1 − V , if s(e) = 0, s(ed) = 1

(4)

The contribution to the likelihood for admission, discharge, surveillance test results and the 

in-situ event are summarized in Table 2.

2.3. MCMC updates

Parameters and augmented data were updated using Markov chain Monte Carlo (MCMC). 

Estimation within each iteration of the MCMC consisted of generating a new sample of both 

the augmented data and the model parameters.

To sample the augmented data, we sequentially stepped through each patient and proposed 

an initial colonization status and a sequence of times that the patient switched between 

being colonized and uncolonized. The proposal for the new augmented data depended on 

the transmission rates, clearance rates, and probability of importation. The newly proposed 

augmented data was then accepted according to standard Metropolis acceptance probability 

(Hastings, 1970). Once the augmented data were updated, parameter values were proposed 

conditional on the observed data and the new augmented data. The parameter updates 

were accomplished via both Gibbs (Geman and Geman, 1984) and Metropolis-Hastings 

samples (Table 1) and updated sequentially. The process of updating the augmented data and 

parameter values was iterated and resulted in the posterior distribution for the parameters, 

which formed the basis for the analysis.

2.4. Analysis

We computed facility-specific estimates of posterior means for the model parameters, 

ranges and quartiles (Q1 – Q3), as well as 95% credible intervals (95% CI), a Bayesian 

analogue to the confidence interval. Additionally, we reported median, quartiles and range 

for parameter estimates across the facilities. In addition to the parameter estimates obtained 

from the dynamic transmission model, we derived empirical estimates of admission and 

discharge prevalence to compare with the corresponding model-derived estimates. We 

defined empirical estimates of admission (discharge) prevalence as the percentage of 

admission (discharge) surveillance tests that were positive, where an admission (discharge) 

surveillance test occurred within 1 day of admission (discharge). In contrast to empirical 

estimates of prevalence, model-based estimates of prevalence were based on the estimated 

proportion of individuals colonized according to the underlying transmission model, and 

accounted for the imperfect nature of surveillance tests.
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3. Results

3.1. Facility patient summaries

We analyzed 122 VA hospitals with 971,412 patients having 1,857,328 admissions and 

3,525,837 MRSA surveillance tests, resulting in approximately 1.9 surveillance tests per 

admission. Additionally, we analyzed 111 nursing homes with 63,838 residents having 

95,549 admissions and 188,425 MRSA surveillance tests corresponding with approximately 

2.0 surveillance tests per admission. The median length of stay across all facilities was 

5.1 days in hospitals and 45 days in nursing homes, and a high proportion of admission 

and discharge surveillance samples were taken from all admissions (Table 3). The median 

time between consecutive tests in hospitals was 2.5 days during an admission and 72 

days between consecutive admissions (from discharge to readmission). In nursing homes, 

the median time between consecutive tests was 17 days during an admission and 10 

days between consecutive admissions. The facilities included in this analysis represent a 

geographically diverse collection of facilities across the US.

3.2. Transmission

The median baseline transmission rate, or transmission rate at the beginning of the study in 

hospitals was 0.039 per day (Q1 – Q3; 0.032 – 0.050) and declined to 0.022 (0.016 – 0.029) 

at the end of the study period, a reduction of 43.1% during approximately 3.5 years (Fig. 

1a). The majority of hospitals demonstrated a decreasing transmission rate parameter (Fig. 

1c); the 95% CI of the declining temporal trend term did not include zero in 59 hospitals 

(46%). In two (1.7%) facilities, the temporal trend term was increasing, with the lower 

bound of the 95% credible interval above zero.

Among nursing homes, the median baseline transmission rate was 0.009 per day (Q1 – 

Q3; 0.005 – 0.014) and remained stable at 0.010 (0.006 – 0.015) after 2 years (Fig. 1b). 

The temporal trend parameter for nursing homes was centered on zero, with a much flatter 

distribution than for hospitals. Inspection of the 95% credible intervals demonstrated that 10 

(8.5%) had decreasing transmission and 7 (6.0%) increasing transmission.

3.3. Prevalence

All prevalence measures were substantially higher in nursing homes than in hospitals. 

The first-time admission prevalence, our “importation” parameter, had a median (range) of 

10.5% (5.9%–18.4%) in hospitals and 18.7% (9.2%–37.4%) in nursing homes. Admission 

prevalence, which includes readmissions, was 12.5% (range: 7.1%–21.9%) in hospitals and 

22.8% (13.2%–40.5%) in nursing homes. The average point prevalence was particularly high 

in nursing homes relative to hospitals, and exhibited a broader distribution (Fig. 2b); median 

point prevalence (range) was 33.0% (12.0%–56.1%) and 17.1% (9.2%–41.6%), respectively, 

in the two types of facilities.

Model based estimates of admission prevalence and discharge prevalence were considerably 

higher than empirical estimates of admission and discharge prevalence in both hospitals 

and nursing homes (Fig. 2a). The relative difference between empirical and model-based 

estimates ranged from 18% to 36%.
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Admission prevalence was highly predictive of discharge prevalence in both hospitals and 

nursing homes (Figs. 3a and 3b; correlation coefficients were 0.96 and 0.92, respectively). 

The mean difference between discharge prevalence and admission prevalence was higher in 

nursing homes than in hospitals: 6.1% and 1.1% respectively.

3.4. Clearance rates and false negative

The median (Q1-Q3) of the estimated mean time until loss of colonization (inverse of 

the clearance rate) was 40.1 (30.1–54.5) days during an acute care facility hospitalization 

and 274.0 (237.7–330.0) days during the period between consecutive stays. For long-term 

care facility residents, median estimated time to clearance was 215.4 (142.0–279.1) days 

during their stay, and 108.1 (44.3–191.0) days in the period between consecutive stays. We 

estimated the median (Q1-Q3) false negative probability to be 23.5% (19.5%–26.6%) among 

hospitals and 21.8% (16.6%–25.9%) among nursing homes.

4. Discussion

We fit Bayesian models to VA health system data to estimate the key mechanistic parameters 

that govern the epidemiology of resistant bacteria in healthcare settings. Our findings 

demonstrate that transmission dynamics in nursing homes and hospitals are distinctly 

different. The transmission rate parameter, which represents the linear relationship between 

colonization prevalence and rate of new colonizations, was substantially lower in nursing 

homes than in hospitals. Stated a different way, MRSA cases in nursing homes were less 

infectious per day than those in hospitals, a finding that has potential implications for design 

and implementation of control policies (Slayton et al., 2015). Interventions that address the 

cumulative risk of transmission across longer time scales may be particularly beneficial in 

nursing homes. Heterogeneity in the transmission rate parameter across facilities may also 

serve as a useful facility-level surrogate for quality of infection control practices. However, 

the transmission rate parameter may also be affected by patient factors, such as antibiotic 

use, that influence susceptibility of acquisition as well as bacterial shedding.

One of the key goals of this study was to improve understanding of the impact of VA’s 

MRSA prevention initiative. Our results demonstrate that the median transmission rate 

parameter progressively declined in VA hospitals but not in VA nursing homes. Moreover, 

within the population of hospitals, the temporal trends in transmission rate parameters 

were highly heterogeneous. Further studies to identify which facility characteristics predict 

transmission trends over time may shed light on the factors that influence success of the 

MRSA prevention initiative.

Another finding was that the estimated MRSA clearance rate was much lower in nursing 

homes than in hospitals. The apparent reduction in rate of MRSA clearance in nursing 

homes may partially be due to the decreased intensity of exposure to anti-MRSA antibiotics 

(e.g., vancomycin) compared to hospitals (unpublished data). In order to estimate clearance, 

collection of surveillance tests after a positive test is necessary. In general, since the model 

denotes that negative tests after a positive test represent either clearance or a false negative, 

the higher the fraction of such tests that are positive, the lower the estimated clearance rate. 

It is important to acknowledge that the effect of antibiotics may be to suppress positive 
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test results, without necessarily eradicating MRSA, a difference that our model cannot 

distinguish.

Admission prevalence, discharge prevalence, and average prevalence are three types of 

prevalence that are relevant to healthcare epidemiology. Typically, prevalence is estimated 

directly from the proportion of surveillance tests that are positive, within a time window 

defined according to the type of prevalence (e.g., for admission prevalence, tests collected 

within 24 h of admission). Because of false negativity, this approach yields an underestimate 

of true prevalence. Bias may also arise because of sample selection and test timing. For 

example, a test obtained 24 h after admission may not reflect true admission status; 

similarly, tests obtained prior to discharge may not reflect true discharge status.

Our methods addressed these biases in estimation of these quantities and again demonstrated 

important distinctions between hospitals and nursing homes. In both types of facilities, 

admission prevalence was a very strong predictor of discharge prevalence. However, 

admission prevalence was much higher in nursing homes than hospitals. We note that a 

much higher proportion of long-term care facility patients had prior healthcare facility 

exposure. Moreover, the difference between discharge prevalence and admission prevalence 

was substantially higher in nursing homes. The combination of high admission prevalence, 

reduced clearance, and increased length of stay elevated MRSA prevalence in nursing homes 

relative to hospitals, compensating for the comparatively lower transmission rate parameter.

Our study design and analytical approach had notable strengths. Fitting dynamic statistical 

models to MRSA surveillance data make it feasible to explore epidemiological mechanisms 

that influence disease spread. A key limitation was the simplifying assumption that there 

were only two infection states, namely colonized and uncolonized. This assumption 

meant we were unable to differentiate between patients who were truly uncolonized, and 

those who were exposed or colonized but undetectable due to low-level colonization. 

An additional limitation is that we were unable to explicitly incorporate information on 

adherence to contact precautions, antimicrobial exposure and other factors that may have 

influenced transmission. For example, adherence to contact precautions may be correlated 

with surveillance test compliance. If so, less compliant facilities could have implemented 

contact precautions with lower adherence. Additionally, adherence to contact precautions 

could have changed over time during the study, either improving or waning, due to an 

initial resistance to the policy or an increasing complacency over time. Not explicitly 

accounting for adherence to contact precautions could lead to some bias. Finally, both 

the VA patient population and the VA Healthcare System may not be representative of 

other US hospitals and settings, and the findings of this study with respect to trend and 

variation in epidemiological dynamics may not be generalizable to the entire United States. 

A fundamental challenge in designing and implementing infection control interventions is 

their high resource utilization. Modeling and forward simulation can provide preliminary 

evidence on the effectiveness of interventions while accounting for indirect effects, and may 

identify important limitations or optimal implementation strategies earlier, leading to more 

cost-effective intervention implementations (Halloran et al., 2017). In order for forward 

simulations to reliably predict the impact of intervention strategies, it is critical that their 

predictions be consistent with observed data, and in particular that the parameter value 
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inputs for the simulation are precisely estimated from data. We have estimated the variability 

of key mechanistic parameters across a broad range of facilities, and these parameters can be 

used to test the sensitivity of intervention effects across a wide range of realistic settings.

A facility connected to other facilities via patient transfer or readmission may serve as a 

source of antibiotic resistance, sustaining transmission across a region (Toth et al., 2017). 

Our future extensions of this work will allow for tracking readmissions and transfers across 

multiple facilities and improve our understanding of key factors for controlling regional 

transmission of antibiotic resistance. Additionally, we plan to incorporate detailed patient 

and facility characteristics and to test mechanistic hypotheses to better understand specific 

mechanisms and factors, including progression to clinical infection, that are most important 

for driving transmission and infection within and across a network of healthcare facilities.
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Fig. 1. 
The top panel shows the estimated temporal trend of the median (—quartiles) for the 

transmission rate parameter in a) hospitals and b) nursing homes during the study period, 

The bottom panel shows c) the distribution of the estimated relative change in transmission 

in hospitals and nursing homes.
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Fig. 2. 
Shows a) comparison of distributions for admission prevalence and discharge prevalence 

in hospitals, and nursing homes, shaded gray. Comparison is between those estimates 

derived from the Bayesian transmission model and those estimated empirically, based on 

the proportion of positive admission or discharge surveillance tests, and b) the variation 

and differences in the distribution of facility prevalence within and between hospitals and 

nursing homes.
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Fig. 3. 
Scatterplots indicate the strength of the relationship between model-based estimates of 

admission prevalence and discharge prevalence in a) hospitals, and b) nursing homes. 

Model-based prevalence estimates are the estimated proportion of patients (residents) who 

are colonized at admission and discharge.
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Table 2

Contribution of Event-Specific Probabilities to the Transmission Model Likelihood.

Event Contribution to likelihood - g(e; θ)

In-situ σs(e)(1 – σ)1–s(e)

Clearance η

Negative surveillance test Φ s(e)

Positive surveillance test 1 – Φs(e)

Admission and discharge 1
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Table 3

Summaries of Hospitals, Nursing Homes and Admissions from Veterans Affairs Facilities in the United States.

Factor Acute Care Long-term care

Mean LOS (days) median (Q1-Q3) 5.1 (4.3–6.0) 45 (38–63)

Mean # patients median (Q1-Q3) 62 (29–99) 71 (50–104)

Fraction admission tests median (Q1-Q3) 0.91 (0.86–0.94) 0.80 (0.71–0.86)

Fraction discharge tests median (Q1-Q3) 0.85 (0.76–0.89) 0.76 (0.66–0.83)

Tests per admission median (Q1-Q3) 1.9 (1.8–2.1) 2.0 (1.8–2.1)

Percent of admissions that are readmissions median (Q1-Q3) 46.7% (42.5%–49.6%) 31.7% (26.3%–37.3%)

Region no. (%) 122 (100%) 111 (100%)

West 23 (19%) 19 (17%)

Midwest 30 (25%) 27 (24%)

South 48 (39%) 41 (37%)

Northeast 21 (17%) 24 (22%)
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